
PROFILE AND ANALYZE
THE YELP DATASET

Julia Ohorodnyk

12/05/2022
SQL for Data Science University of California, Davis

Part 1. Profiling and Analyzing the Yelp Dataset

This project is a part of the SQL for Data Science course on Coursera from the
University of California, Davis. All-access to the data is done through Coursera UI.

Yelp is a platform for users to share reviews and rate their interactions with various
organizations – businesses, restaurants, health clubs, hospitals, local governmental
offices, charitable organizations, etc. For the analysis, I will work with the Yelp
Dataset, provided by the US-based organization Yelp.

First, define primary and secondary keys for each table by observing the ER
Diagram of the Yelp Dataset. Then, find the total distinct records by either the
foreign or primary keys for each table.

SELECT COUNT(DISTINCT (business_id)) AS Total_id

FROM attribute

Table Primary key(PK) Foreign key(FK) Total_number

attribute business_id 1115

business id 10000

category business_id 2643

checkin business_id 493

elite_years user_id 2780

friend user_id 11

hours business_id 1562

photo id business_id PK(id) = 10000,
FK(business_id) = 6493

review id user_id,
business_id

PK(id) = 10000,
FK(user_id) = 9681,

FK(business_id) = 8090

tip user_id,
business_id

FK(user_id) = 537,
FK(busines_id) = 3979

user id 10000

https://www.coursera.org/learn/sql-for-data-science/supplement/VSJ29/yelp-dataset-sql-lookup

Entity Relationship Diagram the Yelp Dataset

Primary Keys are denoted with a yellow key icon, and foreign keys with a red
diamond.

Profile the data by finding the total number of records for each of the tables

SELECT COUNT(*) as total_amount

FROM attribute.

After running the same base query for other tables, I found that each has
10000 records.

Table Total amount per table

attribute

10000

business

category

checkin

elite_years

friend

hours

photo

review

tip

user

Search the Null values for the User table

SELECT COUNT(*)

FROM user

WHERE id IS NULL OR

name IS NULL OR

review_count IS NULL OR

yelping_since IS NULL OR

useful IS NULL OR

funny IS NULL OR

cool IS NULL OR

fans IS NULL OR

average_stars IS NULL OR

compliment_hot IS NULL OR

compliment_more IS NULL OR

compliment_profile IS NULL OR

compliment_cute IS NULL OR

compliment_list IS NULL OR

compliment_note IS NULL OR

compliment_plain IS NULL OR

compliment_cool IS NULL OR

compliment_funny IS NULL OR

compliment_writer IS NULL OR

compliment_photos IS NULL

There are no columns in the User table with Null values.

Find the smallest, largest, and average values by applying MIN(), MAX(), and
AVG() functions.

SELECT MIN(stars) as min_stars,

MAX(stars) as max_stars,

AVG(stars) as avg_stars

FROM review

Table Column Min_stars Max_stars Avg_stars

review stars 1 5 3.7082

business stars 1.0 5.0 3.6549

tip likes 0 2 0.0144

checkin count 1 54 1.9414

user review_count 0 2000 24.2995

List the cities with the most reviews in descending order:

SELECT city,

SUM(review_count) as total_review

FROM business

GROUP By city

ORDER BY total_reviews DESC

Find the distribution of star ratings to the business for the Avon city.

SELECT stars,

SUM(review_count) AS total_reviews

FROM business

WHERE city is 'Avon'

GROUP BY stars

Find the top 3 users based on their total number of reviews:

SELECT name, review_count

FROM user

ORDER BY review_count DESC

LIMIT 3

Look for possible correlation between posting more reviews and having more fans.

SELECT name, review_count, fans

FROM user

ORDER BY review_count DESC

Based on the temporary table above, there is no correlation between the amount of
posted reviews and amount of fans for each user. For example, the user with the
name “Fran” has posted fewer reviews than the user “Sara,” but at the same time,
the user “Fran” has more fans.

Search the reviews for the word "love" or the word "hate" in them.

SELECT SUM(text LIKE "%love%") as love,

SUM(text LIKE "%hate%") as hate

FROM review

Display the top 10 users with the most number of fans

SELECT name, fans

FROM user

ORDER BY fans DESC

LIMIT 10

The user with the name Amy has the largest number of fans.

Part 2. Inferences and Analysis

For my analysis, in the second part, I picked the city “Toronto” and the category
“Restaurants” and the stars to compare businesses with low and high ratings.

Do the two groups in my analysis have a different number of reviews?

SELECT b.name,

b.review_count as reviews,

CASE

WHEN stars < 4.0 THEN '0-3'

WHEN stars >= 4.0 THEN '4-5'

END AS stars_range

FROM business as b

INNER JOIN category as c ON b.id = c.business_id

WHERE city = 'Toronto' and category = 'Restaurants'

GROUP BY b.name

ORDER BY reviews

Total review numbers for restaurants in Toronto

I compared working hours and the number of reviews for restaurants in Toronto
with low ratings (stars <4) and high rating(stars >= 4). The total number of
reviews for each restaurant has different amounts of reviews. There is no
correlation between the number of reviews and star groups. For example, the
“Cabin Fever” restaurant has 26 reviews and is assigned to a high rating star group,
while “Big Smoke Burger” has a lower star rating but a much higher number of
reviews = 47.

Do the two groups in my analysis have a different distribution of hours?

SELECT b.name, h.hours, b.stars, b.review_count as reviews,

CASE

WHEN stars < 4.0 THEN '0-3'

WHEN stars >= 4.0 THEN '4-5'

END AS stars_range,

CASE

WHEN hours LIKE "%monday%" THEN 1

WHEN hours LIKE "%tuesday%" THEN 2

WHEN hours LIKE "%wednesday%" THEN 3

WHEN hours LIKE "%thursday%" THEN 4

WHEN hours LIKE "%friday%" THEN 5

WHEN hours LIKE "%saturday%" THEN 6

WHEN hours LIKE "%sunday%" THEN 7

END AS week_day

FROM business as b

INNER JOIN category as c ON b.id = c.business_id

INNER JOIN hours as h ON b.id = h.business_id

WHERE city = 'Toronto' and category = 'Restaurants'

GROUP BY hours

ORDER BY week_day, stars_range

Hours distribution for low and high star range groups

Restaurants with high ratings mostly open and close later than restaurants with low
ratings.

Search for the differences between two business groups based on the ones that are
open and the ones that are closed.

SELECT is_open,

AVG(stars) as avg_stars,

SUM(review_count) as total_review

FROM business as b

INNER JOIN category as c

ON b.id = c.business_id

WHERE city = 'Toronto' and category = 'Restaurants'

GROUP BY is_open

The query above returns the two groups of restaurants based in Toronto. Group “1”
defines the open restaurants, and group “0” for the closed.

Differences:

● Average stars rating for open restaurants is higher - 3.5 than the average
stars rating for closed - 3.0.

● The total number of reviews for open businesses is 22 times the total review
number of closed restaurants.

Part 3. Prepare a subset of the Yelp dataset to make
my own data observation and analysis

In the last part of this project, I want to find the business categories where users'
friends left more reviews. I started my research by joining tables: friend, user,
review, business, and category to count friends that left a review by category.

SELECT COUNT(*) total

FROM friend as f

INNER JOIN user as u ON f.user_id = u.id

INNER JOIN review as r ON u.id = r.user_id

INNER JOIN business as b ON r.business_id = b.id

INNER JOIN category as c ON b.id = c.business_id

The code above returned an unexpected result with value = 0. To understand if it is
an issue with the running code or the dataset itself, I started the investigation by
checking the number of unique categories after joining category and business
tables.

SELECT COUNT(DISTINCT c.category),

COUNT(DISTINCT b.id)

FROM category as c

INNER JOIN business b ON b.id = c.business_id

The result showed the total number of unique categories equal to 257 and business
184. That means not all businesses are assigned to the categories.

The next step is to count reviews for the joined business and categories table only
for the business table to determine the difference.

SELECT COUNT(*) total

FROM review as r

INNER JOIN business as b ON r.business_id = b.id

INNER JOIN category as c ON b.id = c.business_id

—
SELECT COUNT(*) total

FROM review as r

INNER JOIN business as b ON r.business_id = b.id

After querying the dataset, I found the total amount of reviews for

● businesses = 636
● businesses and categories = 73

Having such different results, I can see that not all businesses with reviews have
categories.

The next step of the analysis is to add a user table to look for the intersection with
business. There are four records found.

SELECT COUNT(*) as total

FROM review as r

INNER JOIN user as u ON u.id = r.user_id

INNER JOIN business as b ON r.business_id = b.id

Following the previous code, I added the category table, and there are no
intersections.

SELECT COUNT(*) as total

FROM review as r

INNER JOIN user as u ON u.id = r.user_id

INNER JOIN business as b ON r.business_id = b.id

INNER JOIN category as c ON b.id = c.business_id

Conclusion:
By investigating the Yelp data I found that the dataset contains inconsistent data
and does not let me proceed with the chosen type of analysis.

